Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Access Microbiol ; 4(4): 000346, 2022.
Article in English | MEDLINE | ID: covidwho-1932004

ABSTRACT

Background: Australia's response to the coronavirus disease 2019 (COVID-19) pandemic relies on widespread availability of rapid, accurate testing and reporting of results to facilitate contact tracing. The extensive geographical area of Australia presents a logistical challenge, with many of the population located distant from a laboratory capable of robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. A strategy to address this is the deployment of a mobile facility utilizing novel diagnostic platforms. This study aimed to evaluate the feasibility of a fully contained transportable SARS-CoV-2 testing laboratory using a range of rapid point-of-care tests. Method: A 20 ft (6.1 m) shipping container was refurbished (GeneWorks, Adelaide, South Australia) with climate controls, laboratory benches, hand-wash station and a class II biosafety cabinet. Portable marquees situated adjacent to the container served as stations for registration, sample acquisition and personal protective equipment for staff. Specimens were collected and tested on-site utilizing either the Abbott ID NOW or Abbott Panbio rapid tests. SARS-CoV-2 positive results from the rapid platforms or any participants reporting symptoms consistent with COVID-19 were tested on-site by GeneXpert Xpress RT-PCR. All samples were tested in parallel with a standard-of-care RT-PCR test (Panther Fusion SARS-CoV-2 assay) performed at the public health reference laboratory. In-laboratory environmental conditions and data management-related factors were also recorded. Results: Over a 3 week period, 415 participants were recruited for point-of-care SARS-CoV-2 testing. From time of enrolment, the median result turnaround time was 26 min for the Abbott ID NOW, 32 min for the Abbott Panbio and 75 min for the Xpert Xpress. The environmental conditions of the refurbished shipping container were found to be suitable for all platforms tested, although humidity may have produced condensation within the container. Available software enabled turnaround times to be recorded, although technical malfunction resulted in incomplete data capture. Conclusion: Transportable container laboratories can enable rapid COVID-19 results at the point of care and may be useful during outbreak settings, particularly in environments that are physically distant from centralized laboratories. They may also be appropriate in resource-limited settings. The results of this pilot study confirm feasibility, although larger trials to validate individual rapid point-of-care testing platforms in this environment are required.

2.
ACS Biomater Sci Eng ; 7(10): 4982-4990, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1408219

ABSTRACT

The ability to detect SARS-CoV-2 is critical to implementing evidence-based strategies to address the COVID-19 global pandemic. Expanding SARS-CoV-2 diagnostic ability beyond well-equipped laboratories widens the opportunity for surveillance and control efforts. However, such advances are predicated on the availability of rapid, scalable, accessible, yet high-performance diagnostic platforms. Methods to detect viral RNA using reverse transcription loop-mediated isothermal amplification (RT-LAMP) show promise as rapid and field-deployable tests; however, the per-unit costs of the required diagnostic hardware can be a barrier for scaled deployment. Here, we describe a diagnostic hardware configuration for LAMP technology, named the FABL-8, that can be built for approximately US$380 per machine and provide results in under 30 min. Benchmarking showed that FABL-8 has a similar performance to a high-end commercial instrument for detecting fluorescence-based LAMP reactions. Performance testing of the instrument with RNA extracted from a SARS-CoV-2 virus dilution series revealed an analytical detection sensitivity of 50 virus copies per microliter-a detection threshold suitable to detect patient viral load in the first few days following symptom onset. In addition to the detection of SARS-CoV-2, we show that the system can be used to detect the presence of two bacterial pathogens, demonstrating the versatility of the platform for the detection of other pathogens. This cost-effective and scalable hardware alternative allows democratization of the instrumentation required for high-performance molecular diagnostics, such that it could be available to laboratories anywhere-supporting infectious diseases surveillance and research activities in resource-limited settings.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2
3.
ACS Biomater Sci Eng ; 7(9): 4669-4676, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1373347

ABSTRACT

The COVID-19 pandemic has exposed the dependence of diagnostic laboratories on a handful of large corporations with market monopolies on the worldwide supply of reagents, consumables, and hardware for molecular diagnostics. Global shortages of key consumables for RT-qPCR detection of SARS-CoV-2 RNA have impaired the ability to run essential, routine diagnostic services. Here, we describe a workflow for rapid detection of SARS-CoV-2 RNA in upper respiratory samples including nasal swabs and saliva, utilizing low-cost equipment and readily accessible reagents. Using repurposed Creality3D Ender-3 three-dimensional (3D) printers, we built a semiautomated paramagnetic bead RNA extraction platform. The hardware for the system was built for $300 USD, and the material cost per reaction was $1 USD. Named the Ender VX500, instrument performance when paired with RT-qPCR for SARS-CoV-2 detection in nasal and saliva specimens was two virus copies per microliter. There was a high-performance agreement (assessed using 458 COVID-19 nasal swab specimens) with the Aptima SARS-CoV-2 assay run on the Hologic Panther, a commercial automated RNA extraction and detection platform. Inter- and intrainstrument precision was excellent (coefficients of variation (CoV) of 1.10 and 0.66-1.32%, respectively) across four instruments. The platform is scalable with throughput ranging from 23 specimens on a single instrument run by one user in 50 min to 364 specimens on four instruments run by four users in 190 min. Step-by-step instructions and protocols for building and running the Ender VX500 have been made available without restriction.


Subject(s)
COVID-19 , Humans , Pandemics , Pathology, Molecular , RNA, Viral/genetics , SARS-CoV-2
5.
J Med Microbiol ; 69(9): 1169-1178, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-696076

ABSTRACT

Introduction. The SARS-CoV-2 pandemic of 2020 has resulted in unparalleled requirements for RNA extraction kits and enzymes required for virus detection, leading to global shortages. This has necessitated the exploration of alternative diagnostic options to alleviate supply chain issues.Aim. To establish and validate a reverse transcription loop-mediated isothermal amplification (RT- LAMP) assay for the detection of SARS-CoV-2 from nasopharyngeal swabs.Methodology. We used a commercial RT-LAMP mastermix from OptiGene in combination with a primer set designed to detect the CDC N1 region of the SARS-CoV-2 nucleocapsid (N) gene. A single-tube, single-step fluorescence assay was implemented whereby 1 µl of universal transport medium (UTM) directly from a nasopharyngeal swab could be used as template, bypassing the requirement for RNA purification. Amplification and detection could be conducted in any thermocycler capable of holding 65 °C for 30 min and measure fluorescence in the FAM channel at 1 min intervals.Results. Assay evaluation by assessment of 157 clinical specimens previously screened by E-gene RT-qPCR revealed assay sensitivity and specificity of 87 and 100%, respectively. Results were fast, with an average time-to-positive (Tp) for 93 clinical samples of 14 min (sd±7 min). Using dilutions of SARS-CoV-2 virus spiked into UTM, we also evaluated assay performance against FDA guidelines for implementation of emergency-use diagnostics and established a limit-of-detection of 54 Tissue Culture Infectious Dose 50 per ml (TCID50 ml-1), with satisfactory assay sensitivity and specificity. A comparison of 20 clinical specimens between four laboratories showed excellent interlaboratory concordance; performing equally well on three different, commonly used thermocyclers, pointing to the robustness of the assay.Conclusion. With a simplified workflow, The N1 gene Single Tube Optigene LAMP assay (N1-STOP-LAMP) is a powerful, scalable option for specific and rapid detection of SARS-CoV-2 and an additional resource in the diagnostic armamentarium against COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Pandemics , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL